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A B S T R A C T   

Pavement conditions including pavement temperatures, freezing and thawing depths, and the consequent me-
chanical performance are the key to the performance and longevity of the pavement. For example, thaw- 
weakening is a major cause of pavement damage in seasonally-frozen areas covering half of the U.S., leading 
to huge financial costs for taxpayers. In recent years, the damage has been lessened due to improved practices 
with Spring Load Restriction (SLR) policies. However, prevalent SLR date prediction methods/tools are still 
primitive from the perspective of information technology. Such methods/tools are obtained and/or implemented 
manually with small amounts of data, labor-intensive observations, and/or subjective experience. The paper 
reports what has been learned from a recent project supported by the Michigan Department of Transporation for 
the development of a web-based pavement condition prediction and SLR decision support tool: a web-based app 
called MDOTSLR. MDOTSLR enables access to much more data with little latency and automates data acquisi-
tion, processing, and decision making. In this paper, the data innovations and new models that support the 
functions of the tool will be first introduced. Followed will be the major functions (or services) of the app 
including software engineering details. Compared with traditional tools without web delivery, this web-based 
tool automates the acquisition and processing of weather data, GIS data, road weather information system 
data, and field measurements in real time and thus enables more accurate and convenient SLR predictions. The 
tool can be easily extended or modified for other road agencies for immediate financial savings in road main-
tenance and less disturbance to local transportation and economy.   

1. Introduction 

More than 4,071,000 miles (6,552,000 km) of roads form the arteries 
through which the U.S. economy pulses (Rosenberg, 2004; USDOT, 
2016). Such a transportation infrastructure system links the essential 
components of modern society and directly impacts everyday life: pro-
ducers to markets, workers to jobs, students to schools, and sick to 
hospitals. The highways account for a major portion (6%) of public 
spending (Shirley, 2017; Swenson, 1983). In 2014, federal, state, and 
local governments spent $165 billion on public highways and about 45% 
of the spending went toward operational costs such as winter road 
maintenance (Geddes and Madison, 2020; Reed et al., 2018; Shirley, 
2017; Swenson, 1983), which heavily relied on the understanding of 
pavement conditions such as surface conditions (e.g., temperature, ice), 

freeze-thaw status (e.g., freezing and thawing depths), and consequent 
engineering behavior and maintenance policies (e.g., stiffness, drainage, 
spring load restrictions). 

The practices adopted by most transportation agencies, e.g., county 
road commissions and state departments of transportation in the U.S., 
still mostly rely on simple calculations with models obtained with very 
general models (not site-specific) and limited data. For example, Spring 
Load Restriction (SLR) is a major winter maintenance practice adopted 
by road agencies. However, most county road engineers in the U.S. and 
many in other countries still use the FHWA model, which was developed 
in 1985 based on semi-synthetic data in the state of Washington. Be-
sides, freezing and thawing depths – another pavement status indicator – 
only have very simple statistical/empirical models for their predictions. 
Such models were usually developed with limited data from specific 
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sites and thus have difficulties in considering the variability in material 
properties. As a result, a model of this kind may exhibit very poor per-
formance when being applied to a different location. 

This condition of low data utilization conflicts with the fact that 
Governments have sensed the needs for data since the 1990s and have 
invested more and more in data acquisitions (Shahin et al., 2001; Shahin 
et al., 2008). The data in most engineering disciplines including 
infrastructure-related areas have been explosively increasing due to the 
advances in satellites, chips, audio and video devices, and low-cost 
sensors (Kitchin, 2014; Ma et al., 2015; Zaslavsky et al., 2013). For 
highway infrastructure, state Department of Transportations (DOTs) in 
the U.S. invested billions of dollars in data acquisition systems for 
weather, road information, and traffic (Maze et al., 2008). For example, 
Michigan DOT (or MDOT) established over 100 Road Weather Infor-
mation System (RWIS) sites to collect data for road weather, pavement 
conditions, subsurface temperatures, and traffic images – such real-time 
data can easily reach hundreds of gigabytes. Despite the awareness of 
data’s significance and increasing investments in data collection facil-
ities/equipment, the utilization of such data for aiding in road operation 
and maintenance decision-making still far lags behind. 

This study is performed to advance the road winter maintenance 
especially the spring load restriction practice in three different aspects. 
First, the acquisition, processing, and integration of the data in the 
context of model and software development are investigated. Second, 
new engineering models for assessing the status of the pavements 
including the forecast of pavements surface temperatures, calculation of 
measured freezing and thawing depths, and prediction of the freezing 
and thawing depths, and the start and end dates of the SLR period are 
presented. Third, details in a newly proposed web-based app including 
the enabling information technology are gathered. To introduce these 
new findings, the remainder of the paper is arranged as follows. First, 
background knowledge including the objectives of the project, meth-
odology, and key concepts will be presented to offer a big picture and 
basics for understanding this large-scale application. Then, the data and 
models employed for the web-based tool will be introduced sequentially. 
This is followed by an explanation of the organization and functionality 
of the web-based road condition assessment and SLR decision support 
tool. Finally, conclusions are drawn as a summary of the whole paper. 

2. Overview of this study 

2.1. Objectives 

The paper reports a lesson learned from a large-scale application for 
real-time computing of pavement conditions in cold regions via a project 
conducted with the Michigan Department of Transportation (MDOT) in 
the U.S. The objective of this project is to establish a web-based tool for 
predicting the status of pavements and supporting the decision-making 
for setting and removing SLR. 

2.2. Methodology 

As shown in Fig. 1, the major research and the corresponding 
research products consist of three components: data, models, and app. 
The app, mdotslr.org, is a major research product. To produce a func-
tional and useful tool, the app needs to be running on models that guide 
the predictions of pavement conditions including SLR dates in a 
convenient and accurate way. As the SLR dates rely on the Freezing 
Depth (FD) and Thawing Depth (TD), models for the accurate pre-
dictions of FD and TD, forecast of pavement surface temperatures, and 
calculations of FD and TD based on subsurface temperatures are also 
needed. Due to this reason, models for all these predictions, forecasts, 
and calculations are sought to support the establishment and operation 
of the app. Data are needed for both the development and deployment of 
the models. Hence, data was another significant component of the 
research. By analogy, the app is the body, whereby an intelligent 

creature interacts with the environment and realizes its major functions; 
models are the brain, which determines how the body (app) interact 
with the environment; data are the food, which helps build up the brain 
(models). The app can become more and more robust as models are 
improved with more and more data, and the data can be obtained, 
processed, and managed by the app, leading to a closed-loop and a 
healthy research and development ecosystem. Such a concept has been 
rarely discussed in the existing cold regions and road infrastructure 
research but urgently needed in the advent of the data era. 

The target app, MDOTSLR (www.mdotslr.org) was developed based 
on the existing SLR practices in other states, a scientific understanding of 
the physical processes, existing models for freezing/thawing depth 
predictions, and available criteria and protocols for placing and lifting 
SLR. As shown in Fig. 2, the research consists of three layers, i.e., data, 
models, and app, which corresponds to the three major types of research 
products. In the data layer, four types of data, i.e., weather, RWIS, GIS, 
and field measurements (frost tube), were explored, based on which a 
correlation analysis was conducted to select data to be used in the next 
layer of models. In the model layer, two types of models were developed: 
a widely accepted SLR model, i.e., FHWA, and a newly proposed model, 
i.e., MDOT2019. The FHWA model comprises Freezing Index and 
Thawing Index (FI&TI) calculations and SLR date predictions, which are 
the major components of the FHWA model, and a new component for 
FD&TD predictions, which are proposed in this study to compare with 
the MDOT2019 model. The MDOT2019 model consists of five brand- 
new components, i.e., surface temperature prediction, FI&TI calcula-
tion, FD&TD calculations, FD&TD predictions, and SLR predictions. In 
the app layer, the two types of models were deployed based on data at 
selected sites for predictions covering the whole geographic region of 
Michigan. Five services were enabled: the forecast of pavement condi-
tions including temperatures, FI/TI, SLR dates, mapping of freezing and 
thaw status including FI, TI, and a newly proposed concept to quanti-
fying SLR status, i.e., degree of SLR, freezing statistics showing the 
distribution of the maximum FD contour in any given period, and a data 
portal for organizing and accessing data. 

2.3. FHWA model vs. MDOT2019 model 

The meaning of “model” is more complicated than usual in this study 
due to the scale of the application and the involvement of data and web- 
based apps. The following subsections are intended to offer more 
background information to clarify several concepts relevant to models to 
better introduce the research products. 

This study covers the pavement conditions predictions in cold re-
gions with a focus on the SLR application. For SLR models, the majority 
of the existing practices have been conducted based on the FHWA model 
or its variations. One leading effort is the SLR prediction model adopted 
by the Minnesota DOT in the U.S., which is possibly the only SLR 
application supported by a web-based app before this study (Asefzadeh 
et al., 2016). The SLR model was modified from the FHWA model with 
improved FI&TI predictions to allow for both solar irradiation and micro 

Fig. 1. Major components of the research and deliverables.  
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freeze-thaw cycles and with field measurements. The SLR practice 
adopted by the Manitoba Institute of Transportation in Canada was also 
modified from the FHWA model, with modified criteria for placing and 
removing SLR to better consider the local weather and geological con-
ditions (Bradley et al. 2012). The model adopted by the South Dakota 
DOT improved the FHWA model by considering the influence of pre-
cipitation, i.e., total precipitation of the fall preceding the freeze-thaw 
season. Another variation of the FHWA model proposed by USDA/FS- 
NHDOT featured an improved procedure for calculating the reference 
temperature in the calculation of the FI and TI. In summary, most of such 
variations attempted to improve the FHWA model by better considering 
factors that can affect the SLR predictions, such as precipitation and 
solar irradiation, and such considerations were usually made by modi-
fying the reference temperature for calculating the FI and TI and the 
criteria for placing and removing SLR. 

The newly proposed MDOT2019 model adopted a philosophy 
distinct from that of the FHWA model and its variations. In the FHWA 
model and its variations, the SLR dates are predicted based on the air 
temperature only, and such predictions are made via the FI and TI 
calculated based on the air temperature. Thus, the procedure can be 
simplified as 

Air Temperature➔FI/TI➔SLR Dates.

By contrast, in the MDOT2019 model, the procedure is more 
complicated. One major difference is that two extra elements, i.e., the 
surface temperature and FD/TD, were added to the procedure: 

Air Temperature➔Surface Temperature➔FI/TI −➔FD/TD➔SLR Dates.

One major reason for adding the two elements is that these elements 
can serve as bridges between the original three elements in the FHWA 
model. Instead of jumping from the air temperature to the SLR date 
prediction directly, the prediction of SLR dates with transitions via the 
surface temperature and FD/TD predictions could be much smoother, 
attributed to strong correlations between the new elements and its 
neighboring elements in the above procedure of the MDOT2019 model. 
The addition of such elements also allowed the MDOT2019 model to 
better assess the status of the pavements because the pavement surface 
temperature and FD/TD depths are two key factors in assessing the 
health status of pavement in cold regions. The surface temperature is 
needed for telling the road conditions for traffic and mobility while the 
FD and TD are a key in determining the structural integrity of the 
pavement under frost action. The MDOT2019 model contains (sub-) 
models for all the five elements. 

2.4. Development of model vs. deployment of model 

The development and deployment (use) of models are another point 
that needs to be explained to avoid confusion in understanding the work 

in this study. In traditional engineering research, the development and 
use of models are usually lumped together. In a simple way, the devel-
opment of a model can be the acquisition of a new equation(s) via sta-
tistical or physics-based analysis, while the use of the model is to apply 
the model for analysis and application with new data. However, the use 
of models can be much more complicated as the development of a web- 
based app and the use of massive data are involved. 

In this study, the development and use of models, especially 
MDOT2019, are two separate processes implemented by different 
parties at different locations with different sources of data. As shown in 
Fig. 3, the model was developed with surface and subsurface tempera-
tures from the RWIS data at RWIS sites where adequate data is available. 
The data was used to construct (sub-)models for elements such as 
pavement surface temperatures. The constants in these equations reflect 
the local conditions such as geographical location, local weather, and 
material properties. The developments of such (sub-)models were con-
ducted manually via statistical analysis. The use of the models was 
achieved by deploying such models in the web-based app. For example, 
the development and deployment phases can use different data sources. 
In the deployment phase, the surface temperatures, as the input, come 
from predictions made with the air temperature forecasts instead of 
RWIS measurements in the development phase, because RWIS can only 
provide measurements but no forecasts. 

For deployment, it is also worthwhile to mention that interpolations 
were employed so that predictions at any given location can be made 
with models that were obtained at a limited number of RWIS sites. For 
the purpose, the concept of virtual RWIS (vRWIS), where input infor-
mation such as weather and pavement conditions was obtained for 
calculations/predictions, was explored. Multiple techniques exist for 
extrapolating weather conditions from known locations to “virtual” 
sites: interpolation, climatological extrapolation, two-dimensional field 
analyses, and three-dimensional field analyses. This study adopts the 
interpolation technique. As shown in Fig. 4, the data at any given point 
can be obtained by interpolating the data at the three nearest valid RWIS 
sites with sufficient data. Such an interpolation was conducted based on 
the geographic locations of the sites in this study. For the purpose, the 
latitudes and longitudes of the sites are used to calculate the distance 
between any two sites. It is common to witness missing data caused by 
the misfunctioning or absence of sensors due to the heterogeneous 

Fig. 2. Architecture and workflow of the research.  

Fig. 3. Relationship between the development of deployment (use) of models.  
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sensor setup across the RWIS stations. 
In addition to vRWIS, another type of mapping is introduced to 

enable site-specific predictions for not only any RWIS site, but also any 
county and zip code. In the app, the data was indexed by the RWIS site, 
county, and zip code. That is, the data for any location associated with 
any type of index can be converted to another index. The conversion can 
be done with pre-defined mappings. In the app, these mappings were 
achieved via tables. For example, the predictions for a given county can 
be obtained by averaging the predictions for the zip codes belonging to 
the county. 

3. Data 

This study features the utilization of data. Four types of data 

including weather, RWIS, GIS, and field measurements were tested or/ 
and adopted in the development and deployment stages of the project. 
As of now, weather and RWIS data has been implemented with data 
going back to 2013 while GIS soil data has been fully implemented. The 
weather and GIS data were collected and indexed for each zip code, 
RWIS data was acquired from each RWIS station, while field measure-
ments, i.e., frost tube data, was fetched from each frost tube site. Shown 
in Fig. 5 are the locations of RWIS sites (blue) and sites with field 
measurements (green). 

3.1. Weather data 

Accurate air temperature information, both existing weather data 
and forecasts, can be obtained from various websites for free, though 
historical weather data can be hard to find at best and unreliable at 
worst. The initial weather database in MDOTSLR was created with a 
weather API from APIXU (https://www.apixu.com/) for data back to 
2016 considering the low cost, good coverage, and excellent data 
integrity (no missing dates or regions). Other data APIs including those 
from NOAA were also tested at the beginning of the project. Most of 
these APIs exhibited issues in the above three aspects. For data before 
2016, data were imported via the utilization of https://mesowest. 
org/api/, which was available for free and had a longer date range 
available but lacks complete coverage. 

For forecast data, the Wunderground weather API at https://www. 
wunderground.com/weather/api/ is used considering its free ten-day 
forecasts. Forecasts extending over a longer period such as thirty days 
are also possible with APIs such as the one from http://www.accuweath 
er.com/. However, long-range weather forecasts beyond one week a 
very questionable due to significantly reduced accuracy. In the latest 
version of the app, an API provided by Iteris (https://www.iteris.com/), 
who is the contractor for the MDOT MDSS system, was used to replace 
the APIXU weather data acquisition. 

Fig. 4. Pavement temperature calculation with measurements from nearby 
RWIS sites. 

Fig. 5. RWIS stations and frost tube measurement sites in Michigan.  
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3.2. Acquisition of RWIS data 

In early versions of the app, RWIS data were acquired via an API 
provided by the Vaisala corporation, the RWIS contractor of MDOT from 
December 2016 to June 2019. The data provided by Vaisala’s API was 
expressed in fifteen-minute intervals. This presents two problems as 1) 
we were interested in the entire day in aggregate, not just in 15-min 
snapshots, and 2) we wanted a long date range of data, not just three 
days. To solve these problems, a script was developed and run at 1 a.m. 
every morning to capture and save the data from the API for the previous 
day into a MongoDB database. The script looks at all fifteen-minute 
periods over the past twenty-four hours, organizes all values into ar-
rays that are representative of each data field and each sensor. These 
arrays then have their values averaged and that average is stored in the 
database as the value for that day. In the latest version of the app, 
PostgreSQL was used to replace MongoDB for managing the local 
database to facilitate data management considering the relational nature 
of the data. 

RWIS data from 104 MDOT RWIS sites provides typical weather, 
road, and subsurface information. More sites will be built and added. 
The other source of RWIS data was historical data provided by Vaisala as 
csv and rpt files. The csv data has been fully imported to the local 
database in a fashion similar to that for data imported using the API. The 
rpt files unfortunately were proprietary and required some extra time to 
turn into csv’s that could be imported. 

3.3. Integration of GIS and soil data 

GIS soil data is available for free from the USDA’s soil mart database 
(https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). Typical 
material properties for the top soil layers, i.e., six feet, can be obtained 
via the WebSoilSurvey API. All needed GIS data has been imported from 
the GIS site using an API. However, it is worthwhile to mention that the 
soil data was included to assist in the model development but is not 
being used in the operation of the models in the app. This is because 
most of the state highways managed by MDOT were built with exca-
vation to depths more than six feet. That means, the base and subgrade 
material can be different from that in the GIS for the same location. 
Therefore, the GIS soil information, especially water content of the soil, 
the clay, silt and sand content of the soil, and the depth to the water 
table, was just used for reference when developing and assessing the 
models. Despite this fact, such GIS information may still be very useful 
for low volume and unpaved roads, which are laid over the natural soils. 
The GIS data can be utilized for more accurate site-specific models. 

3.4. Data selection via correlation analysis 

As introduced in the previous subsections, four categories of data 
were/are being obtained. In theory, any data can be employed for the 
predictions of FD/TD and SLR dates as long as the data is related. For 
example, in an initial assessment, the following data types were 
considered to be related to the intended predictions: 1. air temperature 
(freezing/thawing indices), 2. wind speed, 3. solar irradiation, 4. degree 
of saturation, 5. saturated thermal diffusivity 6. pavement type (cement 
and concrete) and thickness, and 7. thickness of the base (if any). 
However, it was found that it would be unrealistic to use all the infor-
mation due to several reasons. First, some parameters such as pavement 
and soil information cannot be easily or/and accurately determined. 
Second, the establishment and use of a multivariate model with a lot of 
input variables are difficult and computationally expensive. Third, not 
all the parameters are equivalently relevant; as a result, the inclusion of 
some parameters in the model not only could be unworthy but also 
causes unexpected issues in both the development and the deployment 
of the models. 

In the previous studies on freezing and thawing depth predictions 
and SLR date predictions, engineers usually assumed some parameters 

are significant, either based on observations or intuitions, and then 
constructed prediction models based on the assumption. This study 
attempted at establishing models using a more rational approach. That 
is, correlation analysis was conducted first to quantify the correlation 
between different types of data and predictions of interest such as FD 
and TD. Based on the results of the correlation analysis, the most rele-
vant data types were selected as the input for the prediction models. The 
most common formula for correlation is Pearson’s correlation formula. 

ρX,Y =
cov(X, Y)

σXσY
(1)  

where X and Y are the two variables whose correlation is computed, cov 
(X,Y) is the covariance of X and Y, σX is the standard deviation of X, σY is 
the standard deviation of Y. The covariance is calculated using the 
following equation: 

cov(X, Y) = Е[(X − μX)(Y − μY ) ] (2)  

where Е is the expectation, μX is the mean of X, and μY is the mean of Y. 
Shown in Fig. 6 are the correlation analysis results for selected data 

types at a typical RWIS site. As can be seen, the correlation coefficient 
between any variable and itself is one. The correlation coefficients of 
interest in this study are those between FD&TD and other data types. It is 
not difficult to conclude that the pavement temperature has the highest 
correlation coefficient with both FD and TD in most cases, followed by 
the air temperature, FI, and TI. Due to this fact, the prediction models for 
FD&TD and SLR dates were built with freezing and thawing indices 
calculated with the pavement surface temperature. It is noted that pre-
cipitation, which was considered as a significant factor in some SLR 
models, exhibits a low correlation with the FD or TD in the RWIS data of 
this study. As a result, such data types, which may lead to insignificant 
improvements in the prediction accuracy but could increase the diffi-
culty of statistical analysis significantly, were not adopted. 

4. Model 

4.1. Pavement surface temperature prediction 

The surface temperature of pavement is a key factor in determining 
the driving conditions, i.e., roughness, cracks, snow and ice coverage, 
and salt concentration, and consequently the traffic condition. The 
correlation analysis introduced in the previous section also indicated 
that it has the strongest correlation with FD and TD. Therefore, the 
pavement surface temperature was selected for FD/TD and SLR pre-
dictions. This surface temperature is determined by the air temperature 
as well as other factors such as solar irradiation, precipitation, material 
properties, and geographical locations. While its strong correlation with 
the air temperature can be easily observed, models that can satisfactorily 
predict this parameter have not been reported. After extensive pre-
liminary statistical analysis, it was found that predictions of the changes 
instead of the absolute value of the surface temperature exhibited much 
more promising results. The following relationship was found to be the 
one that can best predict the surface temperature changes: 

ΔT = a + b⋅ΔT − c⋅
(

T − T
)

(3)  

where ΔT is the change in the pavement surface temperature over a 
given time Δt, ΔT is the change in the air temperature over that time, 
T −T is the difference between the present surface temperature and air 
temperature, and a, b, c are the fitting constants determined by the site- 
specific conditions. Given Δt=1 day, Eq. (3) can be reformulated to 
predict the surface temperature on Day i + 1 based on the known in-
formation on Day i: 

Ti+1 = Ti + a + b⋅(Ti+1 − Ti) − c⋅
(

Ti − Ti

)
(4) 
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Data from multiple RWIS stations were adopted to test the perfor-
mance of the above equations. Fig. 7 demonstrates the performance of 
the above equations in fitting the measured data from two RWIS sites in 
Michigan, i.e., Calumet (a) and South Cadillac (b) in upper and lower 
Michigan, respectively. Most of the measured data illustrated by red dots 
are distributed in the vicinity of the blue plane representing the pro-
posed function in Eq. (3). 

The above results were obtained with a time increment of Δt=1 day. 
The agreement between predictions and measurements confirmed the 
effectiveness of the proposed function in formulating the relationship 
between the pavement surface temperature and air temperature. The 
above analyses yielded the following models for predicting the surface 
temperature when Δt=1 day: 

Calumet : ΔT = 1.13663 + 0.69464⋅ΔT − 0.23222⋅
(

T − T
)

(5)  

South Cadillac : ΔT = 1.16592 + 0.68907⋅ΔT − 0.24251⋅
(

T − T
)

(6) 

The above equations are adequate for predicting the surface tem-
perature on the following day based on the surface temperature and air 
temperature on the current day and the forecasted air temperature for 
the following day. However, predictions over a longer period are desired 
for long-range predictions and decision-making. For the purpose, the 
following iterative procedure was proposed.  

1. The current day is Day (i), for which Ti and Tare known. Ti+1 is 
available from the weather forecast. For example, with a 7-day air 
temperature forecast, Ti+1 to Ti+7 are known.  

2. Calculate the change in the surface temperature from Day (i) to Day 
(i+1) using a model such as the one obtained for the South Cadillac 
site. 

Fig. 6. Correlation analysis of different types of data of pavement.  

Fig. 7. Regression analysis of the proposed prediction model for pavement surface temperatures.  
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3. Calculate the surface temperature on Day (i+1) using Eq. 4.  
4. Move to the next day and repeat the above steps until the intended 

forecast, e.g., 7 days, is finished. 

The above procedure was adopted to predict the surface tempera-
tures at various sites. It is surprising to find that the Calumet model and 
South Cadillac model gave out very similar predictions at most MDOT 
RWIS sites for data between January 15 and May 15 in different years, 
which covers most of the freeze-thaw periods in Michigan. Fig. 8 shows 
the forecast made with the South Cadillac model at the South Cadillac 
and Seney sites. The one-month forecast is much longer than the seven- 
day forecast needed for the app, but the Cadillac model still gives very 
good predictions at these two sites. Therefore, the south Cadillac model 
formulated by Eq. (6) was adopted as the state-wide model for pavement 
surface temperature predictions. 

4.2. Freezing and thawing indices calculation 

The concepts of FI and TI have been widely used in studies on the 
prediction of pavement conditions under frost action such as FD, TD, and 
SLR dates. The idea behind the FI and TI is to count the total amounts of 
freezing and thawing, respectively. As shown in Fig. 9, the temperature, 
e.g., usually the daily average air temperature, is split into two parts by a 
reference temperature such as the freezing point of bulk water. The area 
above the reference temperature reflects the amount of thawing cumu-
lated over time while that below of the reference reflects the total 
amount of freezing. 

In the FHWA model, FI and TI are calculated cumulatively over time 
using the following two equations. 

FI =
∑M

i=1
(0 − Ti) (7)  

TI =
∑N

j=1

(
Tj − Tref

)
(8)  

Tref = 29 F ( − 1.67∘C) (9)  

where i and j are day numbers of the freezing day and thawing day, 
respectively, since the beginnings of the freezing freeze-thaw season, 
and Ti and Tj are the average temperatures of the ith freezing day and jth 
thawing day, respectively. Each day in a freeze-thaw cycle is either a 
freezing day or a thawing day, depending on which one of the above two 
equations is activated to calculate the corresponding temperature index. 
Tref was originally proposed to account for the difference between the 
temperature of the pavement and that of the air, but later improved to 
consider other factors in different variations of the FHWA model. 

The MDOT2019 model inherits the above equations for calculating 
the FI and TI. However, as mentioned, the daily average pavement 
surface temperature instead of the daily average air temperature was 

used, considering that the surface temperature has a higher correlation 
with the freezing status of the pavement. As a result, the obtained FI and 
TI values give out better quantifications of the total amounts of freezing 
and thawing in the pavement, respectively. Fig. 10 shows a typical 
comparison between FI values calculated with the FHWA and 
MDOT2019 models. As can be seen, the two models give out different FI 
values, both in terms of magnitudes and spatial distributions. FI values 
obtained in MDOT2019 are usually lower than those in the FHWA 
model, while the TI in MDOT2019 is greater than that in the FHWA 
model. Since the pavement surface temperature is much more reliable in 
reflecting the freeze-thaw status of pavement, the above differences 
especially those in the spatial distribution indicate that use of the FI and 
TI in the FHWA model may lead to FD/TD predictions that are much 
different from the actual values. 

4.3. Calculation of freezing and thawing depths 

FD and TD are the two most significant types of data that are needed 
for the development and validation of FD/TD prediction models and SLR 
prediction models. Such data can be directly measured using frost tubes 
or other similar devices. However, frost tube measurements are not 
available at MDOT RWIS sites, which is possibly a very common situa-
tion in most RWIS systems. Frost tube measurements are only available 
for some sites at locations different from the RWIS sites and readings are 
only available on a few days when manual measurements are taken. The 
limited frost tube data is excluded in the current app and only used for 
validations of SLR date predictions and decision making. Considering 
the situation, an effort was made to calculate FD and TD based on 
subsurface temperatures. The calculated FD and TD can also be viewed 
as “measured” results as long as the calculation procedure presented in 
this subsection is credible. 

Fig. 8. Forecast of surface temperatures using the South Cadillac model at a) the Cadillac site for 3/1/2019–4/1/2019 and at b) the Seney site for data 3/1/2019–4/ 
1/2019. 

Fig. 9. Schematic of freezing and thawing indices.  
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Fig. 11 is used to illustrate the way to calculate the FD and TD from 
subsurface temperatures. As illustrated, the rightmost curve represents a 
typical temperature distribution when the temperature at all the depths 
within the base and subgrade layers are above zero, e.g., a constant 
positive value. In early winter, the temperature decrease starts from the 
top, leading to the leftmost curve. The point of intersection between this 
curve and the freezing point curve corresponds to the freezing front. The 
depth of this point is FD. In spring, warm air temperatures trigger 
thawing from the top, which will bend the temperature curve into 
something like the middle curve. This curve intersects with the freezing 
point curve at two points. While the lower intersection point corre-
sponds to FD, the upper intersection point marks TD. During calculation, 
these two curves can be differentiated by the change in the sign when 
passing the intersection point from top to bottom: a switch from the 
positive sign to the negative indicates TD whereas one from the negative 
to positive indicates FD. More than two points of intersection were 
observed in regions with several micro freeze-thaw cycles. 

The FD and TD values calculated with measured subsurface tem-
peratures at a typical site are presented in Fig. 12. As can be seen, FD 

first appeared in the middle of November 2017 and decreased signifi-
cantly at the beginning of March 2018. During the freezing period, FD 
decreases somewhat, especially at the beginning of the freezing period. 
This is because there were several warm days to thaw the pavement 
base, leading to a decrease in FD. There are a few TD points before 
March 2018 such as Point A. 

4.4. Freezing and thawing depth predictions 

The predictions of FD and TD are desired for assessing the status of 
pavement in cold regions for many relevant applications including SLR 
practices. The existing studies can be categorized into statistical/ 
empirical models and physics-based models. Some statistical/empirical 
models were proposed based on physics, thus can be viewed as semi- 
empirical models from a strict point of view. Compared with statisti-
cal/empirical models, physics-based models can offer better predictions 
when accurate material properties and boundary conditions are avail-
able. But, unfortunately, easy access to such data is usually not the case. 
Besides, it requires much more effort to establish and implement such 
physics-based models. Due to this reason, statistical/empirical models 
are more widely used in practice. 

However, evaluations of the existing statistical/empirical models in 
this study indicated that the existing models cannot satisfactorily 
describe the variation of FD with temperature or temperature indices. As 
shown in Fig. 13, the variation of FD with FI, which has been widely 
adopted for the prediction of FD, does not obey any basic mathematical 
functions as assumed by most of such models, and more significantly, 
the curve is not even smooth. The reason was revealed in this study 
when viewing the data from a higher-dimensional viewpoint. As illus-
trated in Fig. 13, when visualizing the data from a 3D viewpoint, the FD- 
FI curve seen from a 2D viewpoint is just the projection of the 3D curve 
on the FD-FI plane. at the beginning of each freeze-thaw cycle, the FD 
would increase from the origin if FI increases. On warm days within the 
freeze-thaw cycle, the TI increases while the FI remains the same, the 
curve then goes downhill and the FD decreases, which exhibits as a 
turning point in the 2D FD-FI curve such as Points 2 and 4. Based on this 
observation, it is assumed that each site has a unique surface in the FD- 
TI-FI space for FD predictions and another unique surface in the TD-TI-FI 
space for TD predictions. The shape of the surface is determined by the 

Fig. 10. Typical results of freezing index in 1) FHWA model and MDOT2019 model in MDOTSLR.  

Fig. 11. Calculation of freezing and thawing depths based on subsurface 
temperature measurements. 
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field conditions of the site. Therefore, the goal of the model development 
for FD and TD predictions is to search for the mathematical function that 
can best formulate the surface for this site, which is called the FD and TD 
prediction models for this site. 

Statistical analysis of the measured data at many RWIS sites indi-
cated the following mathematical equations can best describe the sur-
face in the FD-FI-TI space: 

FD = a
̅̅̅̅̅
FI

√
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c − bTI

√
+ d (10)  

where a, b, c, and d are fitting constants, in which the first three are 
always positive. A mainstream viewpoint is that freezing and thawing 
have similar processes, thus the mathematical formulations for TD and 
FD are similar, 

TD = − e
̅̅̅̅̅̅̅̅
FIT

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g − fTI

√
+ h (11)  

where e, g, f, and h are fitting constants, in which the first three are al-
ways positive. FIT is the cumulative freezing index in the thawing period 
only. Thus, the FI values cumulated before the start of the thawing 
period will be zeroed out in FIT calculations. 

However, direct applications of the above equations may lead to 
unrealistic predictions or/and incompatible curve fitting results be-
tween FD and TD. To address the issues, constraints that better relate the 
above equations to the real conditions were added. The physical 
meanings of c and d in Eq. (10) were related to the pavement surface 
thickness. Before the freezing season starts, it is known that both FI and 
TI equal zero. Thus, Eq. (10) can be rewritten as 

FDini =
̅̅̅
c

√
− d (12)  

where FDini is the initial freezing depth representing the pavement sur-
face thickness. In Fig. 14, the base surface is the datum. FD starts from 
zero in the early freezing stage when FI is slightly greater than zero and 
TI is equal to zero. FD only occurs in the base and subgrade soils beneath 

the pavement surface. Under the condition of FI = TI = 0, FDini needs to 
be equal to an equivalent pavement thickness, which is assumed to be 
25 cm in this study, such that realistic pavement structure conditions can 
be physically described using Eq. (10). Similarly, Eq. (11) for TD can be 
written as 

TDini = −
̅̅̅
g

√
+ h (13) 

At the same site, FDini = TDini is required. The above explanations 
give out the physical meanings of all the fitting constants in the multi-
variate FD and TD prediction models (Eqs. (10) and (11)). This is 
different from the existing prediction models in which regression ana-
lyses were conducted without constraints, which may lead to problem-
atic fitting constants ((Baïz et al., 2008) and Chapin et al. (2012)) . 

Non-constrained nonlinear regression of measured data is widely 

Fig. 12. Calculations of measured FDs and TDs for a typical RWIS site.  

Fig. 13. From a) 2D models to b) 3D models.  

Fig. 14. Schematic of a test road pavement cross section.  
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used to find fitting constants in the FD/TD prediction models (Asefzadeh 
et al., 2016; Baïz et al., 2008; Marquis, 2008; Miller et al., 2012). 
However, non-constrained nonlinear regression cannot satisfy the re-
quirements of Eqs. (12) and (13) in this study. We thus propose a new 
constrained optimization approach to satisfy such requirements. In 
theory, the minimum of a nonlinear multivariable function f(x) can be 
expressed as (Bertsekas, 2014), 

min
x

f (x) such that
{

x ≥ 0
ceq(x) = 0 (14)  

where x is the fitting constant vector and ceq(x) is the equality con-
straints that need to be satisfied. Take FD for example, x contains a, b, c, 
and d. f(x) and ceq(x) can be expressed as 
{

f (x) = FD(x) − g(x)

ceq(x) =
̅̅̅
c

√
− d − FDini

(15)  

where g(x) is the measured data vector. As mentioned, FDini = TDini = −

25 is used. A negative sign is used here because the base surface is the 
datum. The sequential quadratic programming method (Gill and Wong, 
2012) was adopted for the constrained nonlinear optimization. The 
randomly generated x was used to start the optimization process with a 
termination tolerance of 10−12. Fig. 15 shows typical results of con-
strained nonlinear regression for obtaining models for two RWIS sites. 

4.5. SLR predictions based on freezing/thawing depths 

4.5.1. SLR criteria 
In this study, the criteria for placing and removing SLR in the FHWA 

model were adopted from the original report of the FHWA model (for 
“thick Pavement”): 

SLR placement : 25∘F-days (22.2∘C-days),

SLR removal : TI = 0.3⋅FI.

In the MDOT2019 model, the dates are determined by the predicted 
FD and TD instead of FI and TI. The date for placing the SLR is the time 
when the FD reaches 4 in.. The threshold FD value was selected to 
maintain a satisfactory level of conservativeness. The date for moving 
the SLR is the day when the FD meets the TD. In a few cases, both FD and 
TD drop below zero within one day, which can be caused by a sudden 
temperature rise. This day is also believed to the time to remove the SLR. 
Table 1 shows the typical SLR predictions with the MDOT2019 and 
FHWA model as well as the real SLR dates suggested by MDOT based on 
field observations. 

4.5.2. Degree of SLR completion 
Quantities that indicate the SLR status could be helpful in SLR 

practice but is missing in the existing studies. The SLR policymakers and 
operational engineers in MDOT expressed strong interest in such 
quantities especially one that can tell how much of the SLR has been 
accomplished or how far we are from the completion of the SLR. Such 

quantities can give both road engineers and road users a more intuitive 
way to visualize the SLR status and make plans. For the purpose, the 
following two equations were proposed as the degree of SLR completion 
in the MDOT2019 model and FHWA model, respectively. 

θ =
TD
FD

(16)  

θ =
FI

0.3⋅TI
(17) 

It is not difficult to notice that the two definitions cannot be 
compared directly because they use different quantities, i.e., FD&TD in 
MDOT2019 and FI&TI in FHWA, in their definitions. Notwithstanding, it 
was found very helpful to assess the spatial distributions of the above 
quantities calculated in both models. Such distributions, which can be 
visualized using contour maps, show the freeze/thaw status of the whole 
region. Fig. 16 shows the degrees of SLR completion on a typical day in 
FHWA and MDOT2019 models. Again, we can see that the two models 
give out different predictions, both in terms of magnitudes and spatial 
distributions. Despite the difference, both models successfully captured 
the occurrence of the SLR, and the degrees of SLR completion are not far 
from each other, especially considering that it is common for the SLR 
dates predicted with the FHWA model to miss the actual SLR dates by 
several weeks. 

5. App 

5.1. Functions of the MDOTSLR tool 

The tool aims to provide two modes for users: automatic and manual. 
In the automatic mode, the users do not need to provide input and they 
can receive an estimate based on the default values. In the manual mode, 
users can enter site-specific information such as the pavement type for a 
better prediction. As of now, the automatic mode has been finished 
while the manual mode is still under development. 

As shown in Fig. 17, the web-based tool provides five main services 
including 1. Temperature, F/T indices & SLR prediction (status and 
forecast), 2. Freeze/thaw depths (freeze/thaw history), 3. Maps of 
freeze/thaw indices (freeze/thaw distribution), 4. Maximum freezing 
depth contour (historical maximum), and 5. Data portal (database for 
public). The five services can be accessed by clicking the corresponding 
button shown on the home page or via the quick access button on the 
right upper corner of any page. Fig. 17 shows the setup of the home page 
on a desktop. However, the responsive design of the tool endows it with 
user-friendliness in other electronic devices such as tablets and mobile 
phones. 

Upon clicking the first service on the homepage, it transfers to a page 
illustrated in Fig. 18, on which users can enter a ZIP code or select a 
county to get the time series graphs of the temperature, freezing/ 
thawing indices, and SLR prediction of a specific area in Michigan. The 
start date and unit of measure also can be chosen on this page. The SLR 
start and end dates in the selected time window, i.e., from the entered 
start date to the present, are marked with the corresponding SLR 

Fig. 15. Predictions of FD and TD with the measured data for Year Cycle 2018–2019.  
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Table 1 
SLR dates predicted with MDOT2019 and FHWA and actual SLR dates.  

Site Year cycle MDOT2019 FHWA Actual SLR dates 

SLR on SLR off SLR on SLR off SLR on SLR off 

Michigamme 
49,861 

2017–2018 2/28/2018 3/19/2018 2/26/2018 5/08/2018 2/26/2018 4/2/2018 
2018–2019 3/13/2019 3/21/2019 3/13/2019 5/04/2019 3/12/2019 4/1/2019 

Seney 
49,883 

2017–2018 2/27/2018 3/10/2018 1/20/2018 5/07/2018 2/23/2018 3/16/2018 
2018–2019 3/17/2019 3/22/2019 11/25/2019 4/27/2019 3/13/2019 3/25/2019 

Eastport 
49,627 

2017–2018 2/19/2018 2/28/2018 1/11/2018 4/23/2018 2/21/2018 3/1/2018 
2018–2019 3/13/2019 3/22/2019 11/25/2019 4/20/2019 3/14/2019 3/25/2019  

Fig. 16. Typical results of DLR completion in a) FHWA (left) and b) MDOT2019 models.  

Fig. 17. Homepage of MDOT SLR App.  
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criteria. The green regions on the right ends of the two graphs represent 
the forecast (i.e., 7 days). All the data are downloadable via a “Download 
data” button at bottom of the web page, which is actually available in 
every service. This service is what road users and engineers need for 
making SLR-related decisions. 

In the second service, the freeze/thaw history of any selected region, 

i.e., zip code, county, and RWIS station, can be checked in terms of the 
variations of FD and TD with time. As shown in Fig. 19, the MDOT2019 
model predicts that freezing invades into the base and lower layers 
starting in December 2019 in the area with a zip code of 49,931. The 
thawing process appears about one week later. The two curves converge 
at the beginning of March in 2020, which marks the end of the SLR 
period. The two dropdown menus on the upper right Conner allow users 
to select any time window to check the freeze/thaw history. The two 
switches for units and models provide options for showing the results 
expressed in different units, i.e., ft. and m, and calculated with different 
models, i.e., FHWA and MDOT2019. It is noted that, if an RWIS station is 
selected, the FD and TD will be depths calculated with subsurface 
temperatures as explained in Section 4.3, which can be viewed as 
measurements instead of predictions. 

Service 4 shows the spatial distribution of freezing and thawing ac-
cumulations and SLR completion values in the whole state. The accu-
mulation of freezing and thawing are quantified using the FI and TI 
values. Fig. 20 shows the distributions of FI calculated with the 
MDOT2019 model on a selected day. This feature is very helpful when 
people either want to get an overall idea of the freeze/thaw distributions 
in a region or want to check the status of the whole state on a specific 
day. In addition to FI and TI, the degree of completion can also be 
checked for its historical distributions. A typical degree of completion 
contour predicted with the two models is illustrated in Fig. 16. 

The fourth service is designed for road engineers, who are especially 
interested in the maximum FD values over a given period. The maximum 
FD values are useful for the determination of the maximum excavation 
depth, which is one key parameter in determining the cost of the 
pavement construction. Also, a spatial distribution of such maximum FD 
values allows engineers to find areas that require special attention such 

Fig. 18. Page of temperature, F/T indices & SLR prediction.  

Fig. 19. Freeze/thaw history in terms of variations of freezing and thaw-
ing depths. 

Z.(L. Liu et al.                                                                                                                                                                                                                                   



Cold Regions Science and Technology 184 (2021) 103228

13

as those regions with abnormal freeze-thaw action. Such areas can be 
easily identified in an FD contour map as shown in Fig. 21. Users can 
specify the time window for calculating the maximum depth. Therefore, 
statistics for different design service life, e.g., twenty years, can be ob-
tained from the maximum values of twenty years once enough data is 
available. The maximum depths delivered via this service include FD 
values predicted by FHWA and MDOT2019 as well as FD values from the 
RWIS measurements. 

The fifth service is intended to provide convenient access to the 
database of the web-based tool. The GIS, RWIS, weather, and field 

measurement data associated with the stations marked in Fig. 5 can be 
displayed as tables once the corresponding station is clicked. For 
example, if a user clicks the green marker which represents the MI-02 
Houghton Lake, the information of this station will be displayed. 

Fig. 22 shows a table of daily weather and RWIS data including the 
parameters of average humidity, average temperature, average visibil-
ity, max wind speed, total precipitation, maximum air temperature, 
minimum air temperature, base temperatures at different depths, and 
chemical factor, and so on. The data can be downloaded as csv files for 
further analysis. 

5.2. Development and use of the web-based app 

The web-based app is essentially a dynamic website. For the front- 
end design, the web pages were written using HTML5 and CSS3 
compiled from SASS. The responsive web design approach was adopted 
to make sure the website can be optimally accessed with all major types 
of electronic devices, i.e., desktops, tablets, and mobile phones. jQuery, 
a JavaScript library, was used to enhance the functionality and user- 
friendliness of the front-end pages. The mapping and location fetching 
was achieved with OpenStreetMap and Leaflet.js. Data transfer between 
the front-end and the server was performed via JSON. Nodejs (a 
JavaScript-based programming platform) was used to manage the 
retrieval of data from the weather and RWIS sites while MongoDB 
(replaced by PostgreSQL later) was used to store the data locally. For 
serving the app, Express, a Node.js website framework, was used to 
deliver HTML documents and data. The calculation process was pro-
grammed on the server side using Node.js to shorten the development 
cycle, though the calculations were developed using separate technol-
ogies. Weather and GIS information was obtained via APIs made avail-
able from the sources listed previously. The calculation results are 
shown as charts and tables on the web pages. This plotting functionality 
was developed using a free software charting library, Chart.js. 

The app has been used in MDOT’s SLR decisions. MDOT begins 
monitoring weather conditions and forecasts in January and uses 
existing tools such as MDOTSLR and pavement and drainage observa-
tions. These are then reported/discussed at a weekly meeting from 
February through May with the Central Office Permits Unit and repre-
sentatives from the MDOT Regions. SLR decisions are communicated to 
MDOT leadership and partner agencies and stakeholders prior to 
implementation. However, it is worthwhile to reiterate that this is a 
decision-support tool; engineers’ judgments and other information are 
still adopted for final decisions. 

5.3. Features and benefits 

Compared with traditional non-web SLR decision support tools, this 
web-based tool was confirmed to possess the following benefits in the 
testing stage.  

• The tool can provide the users with much more accurate, convenient, 
and automated SLR decisions, which can effectively save the in-
vestment in repairing the road damage during the spring thaw season 
and effectively prolong the service life of the pavement.  

• Since this data management and computing are automated, much 
less labor and expertise are required for assessing pavement condi-
tions and making SLR decisions.  

• The road users, especially those seriously affected by the SLR policy, 
such as trucking companies and industries that rely on hauling ser-
vices, can also benefit from this tool.  

• The tool has been changing the current practice in Michigan and 
enabled the SLR practice to be better guided by scientific and engi-
neering principles and benefit from the digital infrastructure.  

• This tool can also provide suggestions and information for future 
RWIS sites and help refine the pavement design so that it can better 
consider frost effects. 

Fig. 20. Spatial distributions of freezing index, thawing index, and degree of 
SLR completion. 

Fig. 21. Maximum freezing depths distributions.  
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• This tool can be easily extended or modified for most states in the U. 
S. as well as other places around the world. Its use could lead to an 
incalculable save in the budget of state DOTs, local road agencies, 
and road users. 

6. Conclusion 

The paper shares the lesson learned from a large-scale application for 
real-time computing of pavement conditions in cold regions. This study 
made research innovations involving data, model, and app to advance 
winter road maintenance and road condition monitoring and enable 
predictions and decision-making with a new computing infrastructure. A 
new MDOT2019 model consisting of new sub-models for road surface 
temperature predictions, freezing/thawing depth calculations with 
subsurface temperatures, predictions of freezing and thawing depths, 
prediction of the SLR dates, and acquisition of freezing/thawing status 
via the degree of SLR completion. Each of these (sub-)models advanced 
the corresponding topics in road engineering in cold regions. The study 
features the automated acquisition, processing, selection, and use of 
data for monitoring and predictions of road conditions in a state-of-the- 
art web delivery. Any other road agency can develop a similar tool by 
developing a web-based app after updating (or customizing) the 
MDOT2019 model (including all of its sub-models) with its own data, 
given that the agency has an RWIS or an equivalent data acquisition 
system. 

In addition to the above innovations, the web-based tool, as an 
ensemble of the research products, showed unique benefits in the use of 
data, high level of automation, self-improvements over time, site- 
specific predictions, and customizable visualization and data access as 
well as other tangible socio-economic benefits. Due to the use of data, 
the study placed a cornerstone to move from the current model-driven 
winter road maintenance to the future data-driven road operation 
practices. 
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